Spatial Gaussian Markov Random Fields: Modelling, Applications and Efficient Computations
نویسندگان
چکیده
منابع مشابه
Efficient Computations for Gaussian Markov Random Field Models with two Applications in Spatial Epidemiology
Gaussian Markov random fields (GMRFs) are frequently used in statistics, and in spatial statistics in particular. The analytical properties of the Gaussian distribution are convenient and the Markov property invaluable when constructing single site Markov chain Monte Carlo algorithms. Rue (2001) demonstrates how numerical methods for sparse matrices can be utilised to construct efficient algori...
متن کاملTransformed Gaussian Markov Random Fields and 1 Spatial Modeling
15 The Gaussian random field (GRF) and the Gaussian Markov random field (GMRF) have 16 been widely used to accommodate spatial dependence under the generalized linear mixed 17 model framework. These models have limitations rooted in the symmetry and thin tail of the 18 Gaussian distribution. We introduce a new class of random fields, termed transformed GRF 19 (TGRF), and a new class of Markov r...
متن کاملNORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Modelling spatial variation in disease risk using Gaussian Markov random field proxies for Gaussian random fields
Analyses of spatial variation in disease risk based on area-level summaries of disease counts are most often based on the assumption that the relative risk is uniform across each region. Such approaches introduce an artificial piecewise-constant relative risk-surface with discontinuities at regional boundaries. A more natural approach is to assume that the spatial variation in risk can be repre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biometrics & Biostatistics
سال: 2013
ISSN: 2155-6180
DOI: 10.4172/2155-6180.1000e128